LOADING...
LOADING...
LOADING...
当前位置: 玩币族首页 > 区块链资讯 > 程序员必须知道的9大数据挖掘工具

程序员必须知道的9大数据挖掘工具

2021-05-07 JS6F8lwt 来源:区块链网络

使用python的开发人员都少不了数据挖掘工具,因为一般来说,能否充分利用数据,取决于是否有合适的工具来清理、准备、合并并正确分析。今天小编介绍9个优秀的数据挖掘工具,感兴趣的小伙伴可以收藏。

1、Genism

Genism是用来做文本主题模型的库,主要用来处理语言方面的任务,如文本相似度计算、LDA、Word2Vec等。Gensim支持TF-IDF、LSA、LDA和Word2Vec在内的多种主题模型算法,支持流式训练,并提供了诸如相似度计算、信息检索等一些常用任务的API接口。

2、TensorFlow

TensorFlow是google开源的数值计算框架,采用数据流图的方式,可灵活搭建深度学习模型,它在图形分类、音频处理、推荐系统和自然语言处理等场景下有着丰富的应用,是目前最热门的机器学习框架之一。

3、思迈特软件Smartbi

Smartbi大数据挖掘平台支持多种高效实用的机器学习算法,包含了分类、回归、聚类、预测、关联,5大类机器学习的成熟算法。其中包含了多种可训练的模型:逻辑回归、决策树、随 机森林、朴素贝叶斯、支持向量机、线性回归、K均值、DBSCAN、高斯混合模型。除提供主要算法和建模功能外,Smartbi大数据挖掘平台还提供了必不可少的数据预处理功能,包括字 段拆分、行过滤与映射、列选择、随机采样、过滤空值、合并列、合并行、JOIN、行选择、去除重复值、排序、增加序列号、增加计算字段等。内置5大类机器学习成熟算法,支持文本分析处理,支持使用Python扩展挖掘算法, 支持使用SQL扩展数据处理能力。

4、Scipy

Scipy基于Numpy,是专门为爬虫而生的工具,有URL读取、HTML解析、存储数据等功能,而且能够提供矩阵支持,以及大量基于矩阵的数值计算模块,包括:插值运算,线性代数、图像信号,快速傅里叶变换、优化处理、常微分方程求解等,可以灵活地完成各种需求。

5、Numpy

Numpy能提供数组支持,进行矢量运算,并且高效地处理函数,线性代数处理等。而且 Numpy是包括Scipy、Matplotlib、Pandas等库的。它比起python内置列表来说速度更快。因为 Numpy内置函数处理数据速度与C语言同一级别,建议使用时尽量用内置函数。

6、Matplotlib

Matplotlib是基于Numpy的一套Python包,这个包提供了Python的数据绘图工具,主要用于绘制一些统计图形。它是好用的数据可视化工具之一,主要用于二维作图,需简单几行代码可以生成各式的图表,只例如直方图,条形图,散点图等。三维绘图也是支持的,但只能画比较简单的。

7、Pandas

Pandas是python数据挖掘必备的工具,应该很多人都不陌生,它源于NumPy,提供不错的数据读写功能,支持增删改查,数据处理函数很强大,并且支持时间序列分析功能,能很方便地对数据进行分析与探索。

8、Scikit-Learn

Scikit-Learn是很优秀的机器学习python库,能够提供完整的学习工具箱,能够进行数据处理,回归,分类,聚类,预测,模型分析等操作。缺点是没有提供神经网络,以及深度学习等模型,不过这也还好,毕竟已经很实用了。

9、Keras

Keras是一个能够帮助深度学习的python库,不但可以搭建普通神经网络,还能建各种深度学习模型,例如:自编码器、循环神经网络、递归神经网络、卷积神经网络等。而且它运行速度很快,步骤简化,定制程度高,能轻松搭建几百个输入节点的深层神经网络。

—-

编译者/作者:JS6F8lwt

玩币族申明:玩币族作为开放的资讯翻译/分享平台,所提供的所有资讯仅代表作者个人观点,与玩币族平台立场无关,且不构成任何投资理财建议。文章版权归原作者所有。

LOADING...
LOADING...