考虑到分布式系统每个节点都有可能失效,并且新的节点很可能动态的增加进来,如何保证当系统的节点数目发生变化时仍然能够对外提供良好的服务,这是值得考虑的,尤其实在设计分布式缓存系统时,如果某台服务器失效,对于整个系统来说如果不采用合适的算法来保证一致性,那么缓存于系统中的所有数据都可能会失效(即由于系统节点数目变少,客户端在请求某一对象时需要重新计算其hash值(通常与系统中的节点数目有关),由于hash值已经改变,所以很可能找不到保存该对象的服务器节点),因此一致性hash就显得至关重要,良好的分布式cahce系统中的一致性hash算法应该满足以下几个方面: 平衡性(Balance)平衡性是指哈希的结果能够尽可能分布到所有的缓冲中去,这样可以使得所有的缓冲空间都得到利用。很多哈希算法都能够满足这一条件。 单调性(Monotonicity)单调性是指如果已经有一些内容通过哈希分派到了相应的缓冲中,又有新的缓冲区加入到系统中,那么哈希的结果应能够保证原有已分配的内容可以被映射到新的缓冲区中去,而不会被映射到旧的缓冲集合中的其他缓冲区。简单的哈希算法往往不能满足单调性的要求,如最简单的线性哈希:x = (ax + b) mod (P),在上式中,P表示全部缓冲的大小。不难看出,当缓冲大小发生变化时(从P1到P2),原来所有的哈希结果均会发生变化,从而不满足单调性的要求。哈希结果的变化意味着当缓冲空间发生变化时,所有的映射关系需要在系统内全部更新。而在P2P系统内,缓冲的变化等价于Peer加入或退出系统,这一情况在P2P系统中会频繁发生,因此会带来极大计算和传输负荷。单调性就是要求哈希算法能够应对这种情况。 分散性(Spread)在分布式环境中,终端有可能看不到所有的缓冲,而是只能看到其中的一部分。当终端希望通过哈希过程将内容映射到缓冲上时,由于不同终端所见的缓冲范围有可能不同,从而导致哈希的结果不一致,最终的结果是相同的内容被不同的终端映射到不同的缓冲区中。这种情况显然是应该避免的,因为它导致相同内容被存储到不同缓冲中去,降低了系统存储的效率。分散性的定义就是上述情况发生的严重程度。好的哈希算法应能够尽量避免不一致的情况发生,也就是尽量降低分散性。 负载(Load)负载问题实际上是从另一个角度看待分散性问题。既然不同的终端可能将相同的内容映射到不同的缓冲区中,那么对于一个特定的缓冲区而言,也可能被不同的用户映射为不同的内容。与分散性一样,这种情况也是应当避免的,因此好的哈希算法应能够尽量降低缓冲的负荷。 平滑性(Smoothness)平滑性是指缓存服务器的数目平滑改变和缓存对象的平滑改变是一致的。 QKFile可以很好的解决这些问题,可以让你上网的时候更爽一点。 那QKFile是怎么解决这些问题的呢? 首先,QKFile是全球第一个拥有千万量级节点的分布式项目,节点已经达到足以提供日常使用的规模。 当我们利用QKFile上传文件时,系统会先对文件进行一个加密,得到一个数值(记住,这个数值很重要,叫哈希值)。 随后系统会将文件进行千刀万剐(分割)、复制,最后分布式的存到若干区块当中。 —- 编译者/作者:工藤胖虎 玩币族申明:玩币族作为开放的资讯翻译/分享平台,所提供的所有资讯仅代表作者个人观点,与玩币族平台立场无关,且不构成任何投资理财建议。文章版权归原作者所有。 |
终端的缓冲
2020-03-07 工藤胖虎 来源:区块链网络
- 上一篇:Chainlink比12月的底部上升了200%
- 下一篇:坚定信仰黎明就在前方
LOADING...
相关阅读:
- 和东北大哥聊密码学终于懂了2020-07-31
- 恶意软件使用Dogecoin区块链进行隐藏的加密货币挖矿2020-07-31
- 区块链3.0大潮,国产去中心化稳定币的推出至关重要2020-07-31
- 携手共进,战略助推,在paydex的世界中一切皆有可能2020-07-31
- 7月31日夜盘BTC行情分析2020-07-31