不知道看过电影《非诚勿扰》的人还记不记得“分歧终端机”这项奇葩发明,两片带把手的塑料片组成一个圆筒,有分歧的两个人将手伸入桶中,用石头剪刀布的方式同时出拳,然后拿开塑料片,根据猜拳结果决定听谁的。这玩意儿乍一看很荒谬,但是不得不说确实在一定程度上保证了猜拳的绝对公平性。 对于一个善于猜拳高手来说,哪怕只有短短半秒钟时间,也足够他观察出对手的手势进而一招制敌,赢得猜拳胜利。因此,在玩猜拳游戏的时候,双方都会尽可能的保证同时出拳。然而,在正常情况下,“绝对的同时”是不存在的,于是“分歧终端机”这个奇葩的发明似乎就有了用武之地。可如今,区块链为类似的公平性问题,提供了更好的解决方案——commitment scheme. Commitment scheme Commitment scheme是一种加密算法,它允许某人承诺某个值,同时将其对他人隐藏,并在以后可以对他人显示。commitment scheme中的值具有约束力,一旦提交,任何人都无法更改它们。此方案有两个阶段:一个提交阶段,该阶段中需要选择和指定一个值;另一个是揭示阶段,此阶段显示和检查该值。其实约等于一个数字化可记录版的“分歧终端机”。 如何在以太坊上构建一个“分歧终端机”? Commitment scheme的功能听上去简单,但适用范围却很广。接下来就让我们手把手的教你,如何用Commitment scheme在以太坊上创建一个数字化版本的“分歧终端机”。对于想要学习区块链技术的人来说,这也不啻于一个有趣又实用的实操学习。 首先,从构造函数和初始化值开始。我们需要为“玩家”提供选择,以猜拳游戏为例,选项为:石头、布和剪刀。之后,要保证它们的功能只在各自的阶段中运行。最后,创建一个表示玩家承诺的结构,并在构造函数中设置一些初始值、状态变量以及事件。 具体操作如下: contract RockPaperScissors { enum Choice { None, Rock, Paper, Scissors } enum Stage { FirstCommit, SecondCommit, FirstReveal, SecondReveal, Distribute } struct CommitChoice { address playerAddress; bytes32 commitment; Choice choice; } event Commit(address player); event Reveal(address player, Choice choice); event Payout(address player, uint amount); // Initialisation args uint public bet; uint public deposit; uint public revealSpan; // State vars CommitChoice[2] public players; uint public revealDeadline; Stage public stage = Stage.FirstCommit; constructor(uint _bet, uint _deposit, uint _revealSpan) public { bet = _bet; deposit = _deposit; revealSpan = _revealSpan; } } 完成上述步骤之后,接下了需要结合检查功能来构建一个Commit Function. 该功能只被允许在两个提交阶段之一中运行。接着,我们可以确保其固有值随交易一同发送,并且将任何额外资金退回。在完成检查后,我们可以将承诺存储起来,发出Commit event,并进入下一个阶段。 具体操作如下: function commit(bytes32 commitment) public payable { // Only run during commit stages uint playerIndex; if(stage == Stage.FirstCommit) playerIndex = 0; else if(stage == Stage.SecondCommit) playerIndex = 1; else revert("both players have already played"); uint commitAmount = bet + deposit; require(commitAmount >= bet, "overflow error"); require(msg.value >= commitAmount, "value must be greater than commit amount"); // Return additional funds transferred if(msg.value > commitAmount) { (bool success, ) = msg.sender.call.value(msg.value - commitAmount)(""); require(success, "call failed"); } // Store the commitment players[playerIndex] = CommitChoice(msg.sender, commitment, Choice.None); // Emit the commit event emit Commit(msg.sender); // If we're on the first commit, then move to the second if(stage == Stage.FirstCommit) stage = Stage.SecondCommit; // Otherwise we must already be on the second, move to first reveal else stage = Stage.FirstReveal; } 接着,从检查这步转到揭示功能。此功能仅在揭示阶段之一中运行,且只接受有效选择。然后,找到玩家数据,以便于检查他们承诺的哈希值,确定是否有效。如果该哈希值有效,对其进行存储,触发Reveal(揭示)事件,进入下一个阶段。 具体操作如下: function reveal(Choice choice, bytes32 blindingFactor) public { // Only run during reveal stages require(stage == Stage.FirstReveal || stage == Stage.SecondReveal, "not at reveal stage"); // Only accept valid choices require(choice == Choice.Rock || choice == Choice.Paper || choice == Choice.Scissors, "invalid choice"); // Find the player index uint playerIndex; if(players[0].playerAddress == msg.sender) playerIndex = 0; else if (players[1].playerAddress == msg.sender) playerIndex = 1; // Revert if unknown player else revert("unknown player"); // Find player data CommitChoice storage commitChoice = players[playerIndex]; // Check the hash to ensure the commitment is correct require(keccak256(abi.encodePacked(msg.sender, choice, blindingFactor)) == commitChoice.commitment, "invalid hash"); // Update choice if correct commitChoice.choice = choice; // Emit reveal event emit Reveal(msg.sender, commitChoice.choice); if(stage == Stage.FirstReveal) { // If this is the first reveal, set the deadline for the second one revealDeadline = block.number + revealSpan; require(revealDeadline >= block.number, "overflow error"); // Move to second reveal stage = Stage.SecondReveal; } // If we're on second reveal, move to distribute stage else stage = Stage.Distribute; } 最后需要的是分配功能。我们需要在确定获胜者之后将奖励支付给他们。此功能也同之前每一步一样,只能在分发阶段或者揭示阶段完成之后才能运行。通过对结果进行检查,判定出获胜的一方,之后计算奖励,触发Payout event,将资金发送到胜者的地址,并为下一次游戏将状态重置。 具体操作如下: function distribute() public { // To distribute we need: // a) To be in the distribute stage OR // b) Still in the second reveal stage but past the deadline require(stage == Stage.Distribute || (stage == Stage.SecondReveal && revealDeadline <= block.number), "cannot yet distribute"); // Calculate value of payouts for players uint player0Payout; uint player1Payout; uint winningAmount = deposit + 2 * bet; require(winningAmount / deposit == 2 * bet, "overflow error"); // If both players picked the same choice, return their deposits and bets if(players[0].choice == players[1].choice) { player0Payout = deposit + bet; player1Payout = deposit + bet; } // If only one player made a choice, they win else if(players[0].choice == Choice.None) { player1Payout = winningAmount; } else if(players[1].choice == Choice.None) { player0Payout = winningAmount; } else if(players[0].choice == Choice.Rock) { assert(players[1].choice == Choice.Paper || players[1].choice == Choice.Scissors); if(players[1].choice == Choice.Paper) { // Rock loses to paper player0Payout = deposit; player1Payout = winningAmount; } else if(players[1].choice == Choice.Scissors) { // Rock beats scissors player0Payout = winningAmount; player1Payout = deposit; } } else if(players[0].choice == Choice.Paper) { assert(players[1].choice == Choice.Rock || players[1].choice == Choice.Scissors); if(players[1].choice == Choice.Rock) { // Paper beats rock player0Payout = winningAmount; player1Payout = deposit; } else if(players[1].choice == Choice.Scissors) { // Paper loses to scissors player0Payout = deposit; player1Payout = winningAmount; } } else if(players[0].choice == Choice.Scissors) { assert(players[1].choice == Choice.Paper || players[1].choice == Choice.Rock); if(players[1].choice == Choice.Rock) { // Scissors lose to rock player0Payout = deposit; player1Payout = winningAmount; } else if(players[1].choice == Choice.Paper) { // Scissors beats paper player0Payout = winningAmount; player1Payout = deposit; } } else revert("invalid choice"); // Send the payouts if(player0Payout > 0) { (bool success, ) = players[0].playerAddress.call.value(player0Payout)(""); require(success, 'call failed'); emit Payout(players[0].playerAddress, player0Payout); } else if (player1Payout > 0) { (bool success, ) = players[1].playerAddress.call.value(player1Payout)(""); require(success, 'call failed'); emit Payout(players[1].playerAddress, player1Payout); } // Reset the state to play again delete players; revealDeadline = 0; stage = Stage.FirstCommit; } 完整合约内容可见公众号。 以太坊是一个公共区块链,可因此导致了对于隐私数据的管理困难。而有许多应用程序就像是上面提到的猜拳游戏一样,需要隐藏值才能正常运行,因此,commitment schemes就成为了一个卓绝的解决方案。 踢马河:RaTiO Fintech合伙人,曾任某券商自营操盘手,十余年海外对冲基金和国内大型投资机构基金经理,资深交易建模专家,币圈大咖。 请尊重原创!转载请注明出处。 —- 原文链接:https://news.huoxing24.com/newsdetail/20200119180425188214.html 编译者/作者:量化踢马河 玩币族申明:玩币族作为开放的资讯翻译/分享平台,所提供的所有资讯仅代表作者个人观点,与玩币族平台立场无关,且不构成任何投资理财建议。文章版权归原作者所有。 |
构建数字化“分歧终端机”——探索Commit-Reveal Scheme
2020-01-19 量化踢马河 来源:火星财经
LOADING...
相关阅读:
- 比特币开启大涨模式,上周涨幅百分之21,八万一枚手机也可以挖2020-08-03
- 昕雨论币:8.3以太坊晚间行情分析与操作建议、如何在震荡趋势里玩转2020-08-03
- 大盘企稳多主力借机起势2020-08-03
- 以太坊疯狂的一周:除了价格还有什么表现优秀?2020-08-03
- 以太坊终将推动牛市到来2020-08-03