玩币族移动版

玩币族首页 > 新闻观点 >

Meta 又出 AI “神器”,开源免费的代码大模型 Code Llama 对比 ChatGPT如何?

原文来源:AGI创新实验室

图片来源:由无界 AI? 生成

Meta 近日发布了一个基于?Llama 2?进行微调构建的大型语言模型?Code Llama,可以使用文本提示生成代码,并且开源,可供研究和商业用途。

Code Llama是针对代码任务的公开?LLM?的最先进技术,有可能使当前开发人员的工作流程更快、更高效,并降低学习编码人员的进入门槛。?Code Llama?有潜力用作生产力和教育工具,帮助程序员编写更强大、文档更齐全的软件。

Code Llama的工作原理

今年?7?月,Meta(原?Facebook)发布了免费可商用的开源大模型?Llama 2。最新发布的?Code Llama?是?Llama2?的专门用于编码的专用版本,是通过在其特定于代码的数据集上进一步训练?Llama 2?来创建的,从同一数据集中采样更多数据的时间更长。

总的来说,Code Llama?具有增强的编码功能,建立在?Llama 2?之上。它可以根据代码和自然语言提示生成代码和有关代码的自然语言(例如,“给我写一个输出斐波那契序列的函数。”) 它还可用于代码完成和调试。

Code Llama支持当今使用的许多最流行的语言,包括?Python、C++、Java、PHP、Typescript (Javascript)、C#?和?Bash。

Code Llama目前拥有三个参数版本:70亿参数、130?亿参数、340?亿参数。

每个版本都使用?500B?代码?token?和代码相关数据进行训练。?70亿 和?130亿参数基础模型和指令模型也经过了中间填充?(FIM)?功能的训练,允许它们将代码插入到现有代码中,这意味着它们可以支持开箱即用的代码完成等任务。

这三种模型满足不同的服务和延迟要求。 例如,70亿模型可以在单个?GPU?上运行。?340?亿模型返回最佳结果并提供更好的编码辅助,但较小的?70亿和?130?亿模型速度更快,更适合需要低延迟的任务,例如实时代码完成。

Code Llama模型提供了具有多达?10?万个上下文?token?的稳定生成。 所有模型都在?16,000?个?token?的序列上进行训练,并在最多100,000?个?token?的输入上显示出改进。

除了是生成更长程序的先决条件之外,拥有更长的输入序列还可以为代码法学硕士解锁令人兴奋的新用例。 例如,用户可以为模型提供来自其代码库的更多上下文,以使各代更相关。 它还有助于调试较大代码库中的场景,在这种情况下,掌握与具体问题相关的所有代码对于开发人员来说可能具有挑战性。 当开发人员面临调试大量代码时,他们可以将整个代码长度传递到模型中。

Meta还微调了?Code Llama?的两个附加版本:Code Llama - Python?和?Code Llama - Instruct。

Code Llama - Python是?Code Llama?的语言专用变体,在?Python?代码的?100B token?上进一步微调。?Code Llama - Instruct是?Code Llama?的指令微调和对齐版本。 指令调整继续训练过程,但目标不同。 该模型接受“自然语言指令”输入和预期输出。 这使得它能够更好地理解人们对提示的期望。 我们建议在使用?Code Llama?进行代码生成时使用?Code Llama - Instruct?版本,因为?Code Llama - Instruct?已经过微调,可以用自然语言生成有用且安全的答案。

但是不建议使用?Code Llama?或?Code Llama - Python?执行一般自然语言任务,因为这两个模型都不是为遵循自然语言指令而设计的。?Code Llama?专门用于特定于代码的任务,不适合作为其他任务的基础模型。

Code Llama的性能如何?

HumanEval和?Mostly Basic Python?编程?(MBPP)?是两个常用编码能力测试基准—— HumanEval?用于测试模型根据文档字符串完成代码的能力,MBPP?用于测试模型根据描述编写代码的能力。根据这两个测试基准对?Code Llama?测试显示,Code Llama优于开源、特定代码的?Llama,并且优于?Llama 2?本身。例如,Code Llama 34B?在?HumanEval?上得分为?53.7%,在MBPP?上得分为?56.2%,超越了ChatGPT,但在?HumanEval?上仍逊于?GPT-4。

图表来源:Meta

CodeLlama-34B的微调模型已超过GPT-4?

虽然Code Llama?并未在测试中一骑绝尘,但这并不是?Code Llama?的全部,其另一个亮点就是再次微调。用户可以通过对开源的Code Llama?进行再次微调,构建出符合自己的需求的最佳版本。

Phind最近根据自己的数据集上对?CodeLlama-34B?和?CodeLlama-34B-Python?进行了微调,其微调版本在?HumanEval?上分别实现了?67.6%?和?69.5%?的成绩,这超过了OpenAI 3?月份公布的?GPT-4?的67%。

相关链接:https://www.phind.com/blog/code-llama-beats-gpt4

实际使用对比ChatGPT vs. Code Llama

首先,这次对比中使用了GPT-3.5?版本的?ChatGPT,以及?Perplexity?平台支持的?Code Llama。我们将提出?8?个问题,以此来对比二者是否成功生成代码。

问题1:

“使用Python。 给定两个字符串?word1?和?word2。 通过以交替顺序添加字母来合并字符串,从?word1?开始。 如果一个字符串比另一个字符串长,请将附加字母附加到合并字符串的末尾。

返回合并后的字符串。

示例1:?输入:word1 =“abc”,word2 =“pqr”?输出:“apbqcr”

?????ChatGPT:成功+1?????Code Llama:成功+1

问题2:

“使用Python。 给定一个字符串?s,仅反转字符串中的所有元音并返回它。

元音为“a”、“e”、“i”、“o”和“u”,它们可以以小写和大写形式出现多次。

示例1:

输入:s =“你好”输出:“霍尔”

?????ChatGPT:成功+1?????Code Llama:失败+0

问题3:

“使用Python。 给定一个整数数组?nums,将所有?0?移至其末尾,同时保持非零元素的相对顺序。请注意,您必须就地执行此操作,而不制作数组的副本。

示例1:

输入:nums = [0,1,0,3,12]输出:[1,3,12,0,0]”

?????ChatGPT:成功+1?????Code Llama:失败+0

问题4:

“使用Python。 你有一个长长的花坛,其中有些地块种植了,有些则没有。 但是,相邻的地块不能种植花卉。给定一个包含?0?和?1?的整数数组花坛,其中?0?表示空,1?表示非空,以及一个整数?n,如果可以在花坛中种植?n?朵新花而不违反无相邻花规则,则返回?true,否则返回?false。

示例1:输入:花坛?= [1,0,0,0,1], n = 1输出:true示例2:输入:花坛?= [1,0,0,0,1], n = 2输出:false

?????ChatGPT:成功+1?????Code Llama:成功+1

问题5:

“使用Python。 给定一个输入字符串?s,反转单词的顺序。

单词被定义为非空格字符的序列。?s?中的单词将至少由一个空格分隔。

返回由单个空格按相反顺序连接的单词字符串。

请注意,s?可能在两个单词之间包含前导或尾随空格或多个空格。 返回的字符串应该只有一个空格来分隔单词。 请勿包含任何额外空格。

示例1:输入:s =“天空是蓝色的”输出:“蓝色是天空””

?????ChatGPT:成功+1?????Code Llama:成功+1

问题6:

“使用Python。 给定一个字符串?s?和一个整数?k,返回?s?中长度为?k?的任何子串中元音字母的最大数量。英语中的元音字母有“a”、“e”、“i”、“o”和“u”。

示例1:输入:s =“leetcode”,k = 3输出:2解释:“lee”、“eet”和“ode”包含?2?个元音。

?????ChatGPT:成功+1?????Code Llama:成功+1

问题7:

“使用Python。 给定一个字符串?s,其中包含星号?*。

通过一次操作,您可以:

在?s?中选择一颗星。

删除其左侧最接近的非星号字符,并删除星号本身。

删除所有星星后返回字符串。

示例1:输入:s =“leet**cod*e”输出:“lecoe””

?????ChatGPT:成功+1?????Code Llama:失败+0

问题8:

“使用Python。 给定一个表示每日温度的整数温度数组,返回一个数组答案,其中answer[i]是在第i天之后您必须等待的天数才能获得较温暖的温度。 如果未来没有一天可以这样做,则保留answer[i] == 0。

示例1:输入:温度?= [73,74,75,71,69,72,76,73]输出:[1,1,4,2,1,1,0,0]”

?????聊天GPT:+1?????代码骆驼:+1

最终结果:

?????ChatGPT: 8/8?????CodeLlama: 5/8

综上,在实际使用效果中,Code Llama?与?ChatGPT?相比并未体现出明显优势,不过以上测试并不能完全成为判定依据。而且,开源的?Code Llama 要比 ChatGPT 更容易让用户根据需求定制,或许能够带来更多的可能性。

参考资料:

https://ai.meta.com/blog/code-llama-large-language-model-coding/https://twitter.com/dr_cintas/status/1695436013689065567https://github.com/facebookresearch/codellama
知识: AI Meta Llama 2